Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
Inorg Chem ; 63(15): 7063-7070, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38567746

RESUMO

2D nanodendrites (NDs) and nanosheets (NSs) have been regarded as efficient nanocatalysts for enhancing the electrocatalytic performance due to their low coordinated sites and abundant electrocatalytic centers. Nevertheless, it remains challenging to construct advanced NDs and NSs in a single reaction system. Herein, by tuning the volume ratios of mixed solvents, the reduction and diffusion rate of Sn2+ on Pd NSs template was rationally controlled to prepare PdSn NDs and PdSn NSs. Ascribed to the open 2D nanostructure, high specific surface area, and robust synergistic effect, the as-prepared PdSn NDs and PdSn NSs exhibited distinguished electrocatalytic activities for ethylene glycol oxidation reaction (EGOR) and ethanol oxidation reaction (EOR), as well as commendable electrocatalytic durability, which were far superior to the Pd NSs and commercial Pd/C. In addition, the PdSn NDs exhibited enhanced reaction kinetics because the characteristic branch structure exposed a high density of active sites. This work may provide significant guidance for preparing excellent nanocatalysts with various morphological features by simply optimizing the content of the coexisting solvents.

2.
Sensors (Basel) ; 24(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38610551

RESUMO

As an indispensable component of coal-fired power plants, boilers play a crucial role in converting water into high-pressure steam. The oxygen content in the flue gas is a crucial indicator, which indicates the state of combustion within the boiler. The oxygen content not only affects the thermal efficiency of the boiler and the energy utilization of the generator unit, but also has adverse impacts on the environment. Therefore, accurate measurement of the flue gas's oxygen content is of paramount importance in enhancing the energy utilization efficiency of coal-fired power plants and reducing the emissions of waste gas and pollutants. This study proposes a prediction model for the oxygen content in the flue gas that combines the whale optimization algorithm (WOA) and long short-term memory (LSTM) networks. Among them, the whale optimization algorithm (WOA) was used to optimize the learning rate, the number of hidden layers, and the regularization coefficients of the long short-term memory (LSTM). The data used in this study were obtained from a 350 MW power generation unit in a coal-fired power plant to validate the practicality and effectiveness of the proposed hybrid model. The simulation results demonstrated that the whale optimization algorithm-long short-term memory (WOA-LSTM) model achieved an MAE of 0.16493, an RMSE of 0.12712, an MAPE of 2.2254%, and an R2 value of 0.98664. The whale optimization algorithm-long short-term memory (WOA-LSTM) model demonstrated enhancements in accuracy compared with the least squares support vector machine (LSSVM), long short-term memory (LSTM), particle swarm optimization-least squares support vector machine (PSO-LSSVM), and particle swarm optimization-long short-term memory (PSO-LSTM), with improvements of 4.93%, 4.03%, 1.35%, and 0.49%, respectively. These results indicated that the proposed soft sensor model exhibited more accurate performance, which can meet practical requirements of coal-fired power plants.

3.
Proc Natl Acad Sci U S A ; 121(16): e2315541121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598341

RESUMO

Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferroptose/genética , Homozigoto , Deleção de Sequência , Peroxidação de Lipídeos , Homeostase , Neoplasias/genética , Neoplasias/terapia , Imunoterapia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38607749

RESUMO

BACKGROUND: After undergoing fibula-free flap harvest, patients may experience complications such as ankle instability. It remains unclear whether these patients have deficits of proprioception, and the recovery process is also uncertain. OBJECTIVE: This study aimed to objectively evaluate proprioception on the donor and normal side of surgical patients during long-term follow-up using the Pro-kin system. METHODS: This study enrolled 36 patients who underwent reconstruction of the head and neck using osseous free flaps harvested from the fibula. Each patient underwent pre-operative evaluations and was subsequently evaluated at postoperative months 1, 3, 6, and 12. The study assessed the proprioceptive evaluation of the lower limbs, muscle function, range of motion of the ankle, and donor side complications. RESULTS: On the donor side, the average trace error (ATE) at postoperative month 1 was significantly higher than pre-operation, postoperative months 6 and 12 (P< 0.05). The test execution time (TTE) at postoperative month 1 was significantly increased by 9.875s compared to the pre-operative levels (P= 0.012, 95% confidence interval [CI] 4: 1.877-17.873) and by 11.583s compared to postoperative month 12 (P= 0.007, 95% CI: 2.858-20.309). The reduction in range of motion of ankle dorsiflexion was most pronounced at postoperative month 1, exhibiting an 11.25∘ decrease compared to pre-operative levels (P< 0.001, 95% CI: 6.304-16.16). Although the range of motion of ankle dorsiflexion gradually improved over time at postoperative months 3, 6, and 12, it remained lower than pre-operative levels (P< 0.05). CONCLUSION: The study revealed that the patients exhibited proprioceptive disturbances in both lower limbs at postoperative month 1. The proprioceptive function gradually improved over time, with a gradual decrease in donor site complications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38655615

RESUMO

SLC45A1 encodes a glucose transporter protein highly expressed in the brain. Mutations in SLC45A1 may lead to neurological diseases and developmental disorders, but its exact role is poorly understood. DNA G-quadruplexes (DNA G4s) are stable structures formed by four guanine bases and play a role in gene regulation and genomic stability. Changes in DNA G4s may affect brain development and function. The mechanism linking alterations in DNA G-quadruplex structures to SLC45A1 pathogenicity remains unknown. In this study, we identify a functional DNA G-quadruplex and its key binding site on SLC45A1 (NM_001080397.3: exon 2: c.449 G>A: p.R150K). This variant results in the upregulation of mRNA and protein expression, which may lead to intellectual developmental disorder with neuropsychiatric features. Mechanistically, the mutation is found to disrupt DNA G-quadruplex structures on SLC45A1, leading to transcriptional enhancement and a gain-of-function mutation, which further causes increased expression and function of the SLC45A1 protein. The identification of the functional DNA G-quadruplex and its effects on DNA G4s may provide new insights into the genetic basis of SLC45A1 pathogenicity and highlight the importance of DNA G4s of SLC45A1 in regulating gene expression and brain development.

6.
Front Immunol ; 15: 1398222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650926

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2023.1188253.].

7.
Schizophrenia (Heidelb) ; 10(1): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443399

RESUMO

Schizophrenia (SCZ), a highly heritable mental disorder, is characterized by cognitive impairment, yet the extent of the shared genetic basis between schizophrenia and cognitive performance (CP) remains poorly understood. Therefore, we aimed to explore the polygenic overlap between SCZ and CP. Specifically, the bivariate causal mixture model (MiXeR) was employed to estimate the extent of genetic overlap between SCZ (n = 130,644) and CP (n = 257,841), and conjunctional false discovery rate (conjFDR) approach was used to identify shared genetic loci. Subsequently, functional annotation and enrichment analysis were carried out on the identified genomic loci. The MiXeR analyses revealed that 9.6 K genetic variants are associated with SCZ and 10.9 K genetic variants for CP, of which 9.5 K variants are shared between these two traits (Dice coefficient = 92.8%). By employing conjFDR, 236 loci were identified jointly associated with SCZ and CP, of which 139 were novel for the two traits. Within these shared loci, 60 exhibited consistent effect directions, while 176 had opposite effect directions. Functional annotation analysis indicated that the shared genetic loci were mainly located in intronic and intergenic regions, and were found to be involved in relevant biological processes such as nervous system development, multicellular organism development, and generation of neurons. Together, our findings provide insights into the shared genetic architecture between SCZ and CP, suggesting common pathways and mechanisms contributing to both traits.

8.
Heliyon ; 10(5): e27153, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455567

RESUMO

Hepatocellular carcinoma (HCC) is associated with high morbidity and mortality globally. tRNA-derived small RNAs (tsRNAs) have emerged as potential targets for cancer treatment. However, the specific impact of tsRNAs on HCC remains undiscovered. In this study, we aimed to investigate the biological significance of tsRNAs in HCC. First, we screened the differentially expressed tsRNAs in HCC tissues and normal tissues adjacent to the tumor (NAT) using high-throughput sequencing and the results showed that tRF-39-8HM2OSRNLNKSEKH9 was more highly expressed in HCC tissues than NATs. Agarose gel electrophoresis (AGE), nuclear-cytoplasmic separation assays and fluorescence in situ hybridization (FISH) were employed to assess the characterization of tRF-39-8HM2OSRNLNKSEKH9. The relationship between the expression of tRF-39-8HM2OSRNLNKSEKH9 and clinicopathological parameters was evaluated and we found that it was positively associated with tumor size. The cell counting kit-8 (CCK8) assay, colony formation assay and EdU staining assay were employed to investigate the role of tRF-39-8HM2OSRNLNKSEKH9 in the proliferation of HCC cells. Additionally, transwell assays demonstrated that overexpression of tRF-39-8HM2OSRNLNKSEKH9 could accelerate cell migration capability. Taken together, tRF-39-8HM2OSRNLNKSEKH9 was highly expressed in HCC cells, serum and tissues, and it may play an oncogenic role in HCC cells through interacting with downstream mRNA targets.

9.
Sci Adv ; 10(13): eadi9035, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552007

RESUMO

The pharyngeal endoderm, an innovation of deuterostome ancestors, contributes to pharyngeal development by influencing the patterning and differentiation of pharyngeal structures in vertebrates; however, the evolutionary origin of the pharyngeal organs in vertebrates is largely unknown. The endostyle, a distinct pharyngeal organ exclusively present in basal chordates, represents a good model for understanding pharyngeal organ origins. Using Stereo-seq and single-cell RNA sequencing, we constructed aspatially resolved single-cell atlas for the endostyle of the ascidian Styela clava. We determined the cell composition of the hemolymphoid region, which illuminates a mixed ancestral structure for the blood and lymphoid system. In addition, we discovered a cluster of hair cell-like cells in zone 3, which has transcriptomic similarity with the hair cells of the vertebrate acoustico-lateralis system. These findings reshape our understanding of the pharynx of the basal chordate and provide insights into the evolutionary origin of multiplexed pharyngeal organs.


Assuntos
Urocordados , Animais , Urocordados/genética , Faringe , Vertebrados , Evolução Biológica , Diferenciação Celular
10.
PLoS One ; 19(3): e0298443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512926

RESUMO

BACKGROUND: Increasing evidence suggests that alterations in gut microbiota are associated with a variety of skin diseases. However, whether this association reflects a causal relationship remains unknown. We aimed to reveal the causal relationship between gut microbiota and skin diseases, including psoriasis, atopic dermatitis, acne, and lichen planus. METHODS: We obtained full genetic association summary data for gut microbiota, psoriasis, atopic dermatitis, acne, and lichen planus from public databases and used three methods, mainly inverse variance weighting, to analyze the causal relationships between gut microbiota and these skin diseases using bidirectional Mendelian randomization, as well as sensitivity and stability analysis of the results using multiple methods. RESULTS: The results showed that there were five associated genera in the psoriasis group, seven associated genera were obtained in the atopic dermatitis group, a total of ten associated genera in the acne group, and four associated genera in the lichen planus group. The results corrected for false discovery rate showed that Eubacteriumfissicatenagroup (P = 2.20E-04, OR = 1.24, 95%CI:1.11-1.40) and psoriasis still showed a causal relationship. In contrast, in the reverse Mendelian randomization results, there was no evidence of an association between these skin diseases and gut microbiota. CONCLUSION: We demonstrated a causal relationship between gut microbiota and immune skin diseases and provide a new therapeutic perspective for the study of immune diseases: targeted modulation of dysregulation of specific bacterial taxa to prevent and treat psoriasis, atopic dermatitis, acne, and lichen planus.


Assuntos
Acne Vulgar , Dermatite Atópica , Microbioma Gastrointestinal , Líquen Plano , Psoríase , Dermatopatias , Humanos , Dermatite Atópica/genética , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Dermatopatias/genética , Psoríase/genética , Estudo de Associação Genômica Ampla
11.
Appl Environ Microbiol ; 90(4): e0174323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470180

RESUMO

Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.


Assuntos
Fenóis , Floroglucinol/análogos & derivados , Pseudomonas fluorescens , Pirróis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas/metabolismo , Antibacterianos/farmacologia , Pseudomonas fluorescens/genética
12.
Schizophrenia (Heidelb) ; 10(1): 35, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490990

RESUMO

Schizophrenia, a multifaceted mental disorder characterized by disturbances in thought, perception, and emotion, has been extensively investigated through resting-state fMRI, uncovering changes in spontaneous brain activity among those affected. However, a bibliometric examination regarding publication trends in resting-state fMRI studies related to schizophrenia is lacking. This study obtained relevant publications from the Web of Science Core Collection spanning the period from 1998 to 2022. Data extracted from these publications included information on countries/regions, institutions, authors, journals, and keywords. The collected data underwent analysis and visualization using VOSviewer software. The primary analyses included examination of international and institutional collaborations, authorship patterns, co-citation analyses of authors and journals, as well as exploration of keyword co-occurrence and temporal trend networks. A total of 859 publications were retrieved, indicating an overall growth trend from 1998 to 2022. China and the United States emerged as the leading contributors in both publication outputs and citations, with Central South University and the University of New Mexico being identified as the most productive institutions. Vince D. Calhoun had the highest number of publications and citation counts, while Karl J. Friston was recognized as the most influential author based on co-citations. Key journals such as Neuroimage, Schizophrenia Research, Schizophrenia Bulletin, and Biological Psychiatry played pivotal roles in advancing this field. Recent popular keywords included support vector machine, antipsychotic medication, transcranial magnetic stimulation, and related terms. This study systematically synthesizes the historical development, current status, and future trends in resting-state fMRI research in schizophrenia, offering valuable insights for future research directions.

13.
Cell Death Dis ; 15(3): 193, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453910

RESUMO

Triggering receptor expressed on myeloid cells-2 (TREM2) has been implicated in susceptibility to neurodegenerative disease. Schwann cells (SCs), the predominant glial cell type in the peripheral nervous system (PNS), play a crucial role in myelination, providing trophic support for neurons and nerve regeneration. However, the function of TREM2 in SCs has not been fully elucidated. Here, we found that TREM2 is expressed in SCs but not in neurons in the PNS. TREM2 deficiency leads to disruption of glycolytic flux and oxidative metabolism in SCs, impairing cell proliferation. The energy crisis caused by TREM2 deficiency triggers mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Combined metabolomic analysis demonstrated that energic substrates and energy metabolic pathways were significantly impaired in TREM2-deficient SCs. Moreover, TREM2 deficiency impairs energy metabolism and axonal growth in sciatic nerve, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy. These results indicate that TREM2 is a critical regulator of energy metabolism in SCs and exerts neuroprotective effects on peripheral neuropathy. TREM2 deficiency impairs glycolysis and oxidative metabolism in Schwann cells, resulting in compromised cell proliferation. The energy crisis caused by TREM2 deficiency induces mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Moreover, TREM2 deficiency disrupts the energy metabolism of the sciatic nerve and impairs support for axonal regeneration, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy (by FigDraw).


Assuntos
Doenças Neurodegenerativas , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Regeneração Nervosa/fisiologia , Doenças Neurodegenerativas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Schwann/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Sci Total Environ ; 921: 171094, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387575

RESUMO

Integrated management and synergistic improvement of the water system is a topic of widespread concern. This study innovatively integrates three functions of quality assessment, synergy evaluation, and driving influence determination to establish a systematic framework assessing water system harmony. A case study of 336 Chinese cities is further performed by combining multi-scale and multi-source datasets. The results show China's water system quality has improved from 2015 to 2022. Development in the water resource, environment, and ecology subsystems have been differentiated, with 0.05 %, 4.33 %, and -1.64 % changes, respectively. The degradation of water ecology and the weak synergy with the other two subsystems have limited China's water system harmony. Water environment improvement played a contributive role in improving the water system quality. The contribution structure of water resources, environment, and ecology has shifted towards equilibrium in recent years. We found and highlighted the north-south differentiation of water system harmony in Chinese cities. The Beijing-Tianjin-Hebei and its surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River are identified as priority regions for water system harmony improvement. The primary contribution of this study is to propose an assessing concept of water resource-environment-ecology system harmony, establish well-structured assessment methods, and integrate the multiple data sources. The novel methods and findings, including the indicator system, application of data mining and decomposing methods, and the city-level water system harmony map, deconstruct and quantify the complex and diverse water system, supporting clearer and more efficient water management policymaking.

15.
Cell Signal ; 118: 111117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401776

RESUMO

Triple-negative breast cancer (TNBC) is recognized as the most malicious form of breast cancer and exhibits an alarming tendency for recurrence, a heightened propensity for metastasis, and an overwhelmingly grim prognosis. Therefore, effective therapy approaches for TNBC are urgently required. In this study, the interferon-stimulated gene 15 (ISG15) expression level was analyzed by bioinformatics and verified by Western blot analysis. The effects of ISG15 on the proliferation and metastasis of TNBC cells were assessed using MTT, Colony formation, EdU, Transwell, and Flow cytometry assays. We also developed a cancer cell-biomimetic nanoparticle delivery system and evaluated its therapeutic efficacy in vivo. In this study, we reported that ISG15 was upregulated in TNBC, and its high expression level correlated with an increased risk of tumorigenesis. Through in vitro and in vivo studies, we discovered that ISG15 knockdown drastically suppressed cell proliferation, invasion, and migration and induced apoptosis in TNBC cells. Our findings revealed that ISG15 was a candidate therapeutic target in TNBC because of its key role in malignant growth and invasion. Moreover, co-immunoprecipitation showed that ISG15 exerted oncogenic functions through its interaction with ATP binding cassette subfamily E member 1 and activated the Janus kinase/signal transducers and activators of the transcription signaling pathway. Furthermore, we created a nanoparticle-based siRNA camouflaged using a cancer cell membrane vesicle delivery system (the CM@NP complex) and confirmed its therapeutic effects in vivo. Our findings confirmed that ISG15 may play a pivotal oncogenic role in the development of TNBC and that CM@siRNA-NP complexes are an effective delivery system and a novel biological strategy for treating TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Interferons/genética , Interferons/metabolismo , Interferons/farmacologia , Linhagem Celular Tumoral , Biomimética , Proliferação de Células/genética , RNA Interferente Pequeno/uso terapêutico , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Ubiquitinas/metabolismo , Citocinas/metabolismo
16.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38400426

RESUMO

This study investigates the application of hyperspectral image space-spectral fusion technology in lithologic classification, using data from China's GF-5 and Europe's Sentinel-2A. The research focuses on the southern region of Tuanjie Peak in the Western Kunlun Range, comparing five space-spectral fusion methods: GSA, SFIM, CNMF, HySure, and NonRegSRNet. To comprehensively evaluate the effectiveness and applicability of these fusion methods, the study conducts a comprehensive assessment from three aspects: evaluation of fusion effects, lithologic classification experiments, and field validation. In the evaluation of fusion effects, the study uses an index analysis and comparison of spectral curves before and after fusion, concluding that the GSA fusion method performs the best. For lithologic classification, the Random Forest (RF) classification method is used, training with both area and point samples. The classification results from area sample training show significantly higher overall accuracy compared to point samples, aligning well with 1:50,000 scale geological maps. In field validation, the study employs on-site verification combined with microscopic identification and comparison of images with actual spectral fusion, finding that the classification results for the five lithologies are essentially consistent with field validation results. The "GSA+RF" method combination established in this paper, based on data from GF-5 and Sentinel-2A satellites, can provide technical support for lithological classification in similar high-altitude regions.

17.
Curr Med Res Opin ; 40(4): 575-582, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38385550

RESUMO

BACKGROUND: Accurate identification of delirium in sepsis patients is crucial for guiding clinical diagnosis and treatment. However, there are no accurate biomarkers and indicators at present. We aimed to identify which combinations of cognitive impairment-related biomarkers and other easily accessible assessments best predict delirium in sepsis patients. METHODS: One hundred and one sepsis patients were enrolled in a prospective study cohort. S100B, NSE, and BNIP3 L biomarkers were detected in plasma and cerebrospinal fluid and patients' optic nerve sheath diameter (ONSD). The optimal biomarkers identified by Logistic regression are combined with other factors such as ONSD to filter out the perfect model to predict delirium in sepsis patients through Logistic regression, Naïve Bayes, decision tree, and neural network models. MAIN RESULTS: Among all biomarkers, compared with BNIP3 L (AUC = .706, 95% CI = .597-.815) and NSE (AUC = .711, 95% CI = .609-.813) in cerebrospinal fluid, plasma S100B (AUC = .729, 95% CI = .626-.832) had the best discrimination performance for delirium in sepsis patients. Logistic regression analysis showed that the combination of cerebrospinal fluid BNIP3 L with plasma S100B, ONSD, neutrophils, and age provided the best discrimination to cognitive impairment in sepsis patients (accuracy = .901, specificity = .923, sensitivity = .911), which was better than Naïve Bayes, decision tree, and neural network models. Neutrophils, ONSD, and cerebrospinal fluid BNIP3 L were consistently the major contributors in a few models. CONCLUSIONS: The logistic regression showed that the combination model was strongly correlated with cognitive dysfunction in sepsis patients.


Assuntos
Delírio , Encefalopatia Associada a Sepse , Sepse , Humanos , Encefalopatia Associada a Sepse/diagnóstico , Estudos Prospectivos , Prognóstico , Teorema de Bayes , Biomarcadores , Sepse/complicações , Sepse/diagnóstico , Proteínas de Membrana , Proteínas Proto-Oncogênicas , Subunidade beta da Proteína Ligante de Cálcio S100
18.
Heliyon ; 10(3): e25595, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356581

RESUMO

The effects of adoptive transferring myeloid-derived suppressor cells (MDSCs) to mice with ventilator-induced lung injury (VILI) are unclear. Our objective was to investigate the effects of adoptively transferring MDSCs in VILI. The mouse model was created by introducing mechanical ventilation through a high tidal volume of 20 ml/kg for 4 h. Inflammation-induced MDSCs (iMDSCs) were collected from the bone marrow of mice with cecal ligation and puncture. iMDSCs were administrated through retrobulbar angular vein 1 h before the mechanical ventilation. The control group was anesthetized and maintained spontaneous respiration. After the termination of mechanical ventilation, bronchoalveolar lavage fluid (BALF) and lung samples 6 h were collected. The concentrations of BALF protein, levels of inflammatory mediators, and white blood cells were all significantly decreased in mice treated with iMDSCs. Histological examinations indicated reduced lung damage after iMDSCs treatment. Moreover, adoptive transfer of iMDSCs could reduce CD4+ T-cell counts and inhibit its inflammatory cytokine secretion. iMDSCs treatment was found to had no immunostimulatory effects or cause secondary infections in mice. In conclusion, MDSCs might be a potential targeted therapy for alleviating the inflammatory response of VILI mice in a T-cell dependent manner.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38317750

RESUMO

Background: Transmembrane protein 43 (TMEM43), a member of the TMEM subfamily, is encoded by a highly conserved gene and widely expressed in most species from bacteria to humans. In previous studies, TMEM43 has been found to play an important role in a variety of tumors. However, the role of TMEM43 in cancer remains unclear. Methods: We utilized the RNA sequencing (RNA-seq) and The Cancer Genome Atlas (TGCA) databases to explore and identify genes that may play an important role in the occurrence and development of hepatocellular carcinoma (HCC), such as TMEM43. The role of TMEM43 in HCC was explored through Cell Counting Kit-8 (CCK-8) cloning, flow cytometry, and Transwell experiments. The regulatory relationship between TMEM43 and voltage-dependent anion channel 1 (VDAC1) was investigated through coimmunoprecipitation (co-IP) and western blot (WB) experiments. WB was used to study the deubiquitination effect of ubiquitin-specific protease 7 (USP7) on TMEM43. Results: In this study, we utilized the RNA-seq and TGCA databases to mine data and found that TMEM43 is highly expressed in HCC. The absence of TMEM43 in cancer cells was shown to inhibit tumor development. Further research detected an important regulatory relationship between TMEM43 and VDAC1. In addition, we found that USP7 affected the progression of HCC by regulating the ubiquitination level of TMEM43 through deubiquitination. Conclusions: Our study demonstrated that USP7 participates in the growth of HCC tumors through TMEM43/VDAC1.Our results suggest that USP7/TMEM43/VDAC1 may have predictive value and represent a new treatment strategy for HCC.

20.
BMC Cancer ; 24(1): 237, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383348

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor with strong invasiveness and poor prognosis. Previous studies have demonstrated the significant role of USP14 in various solid tumors. However, the role of USP14 in the regulation of HCC development and progression remains unclear. METHODS: We discovered through GEO and TCGA databases that USP14 may play an important role in liver cancer. Using bioinformatics analysis based on the Cancer Genome Atlas (TCGA) database, we screened and identified USP14 as highly expressed in liver cancer. We detected the growth and metastasis of HCC cells promoted by USP14 through clone formation, cell counting kit 8 assay, Transwell assay, and flow cytometry. In addition, we detected the impact of USP14 on the downstream protein kinase B (AKT) and epithelial-mesenchymal transition (EMT) pathways using western blotting. The interaction mechanism between USP14 and HK2 was determined using immunofluorescence and coimmunoprecipitation (CO-IP) experiments. RESULTS: We found that sh-USP14 significantly inhibits the proliferation, invasion, and invasion of liver cancer cells, promoting apoptosis. Further exploration revealed that sh-USP14 significantly inhibited the expression of HK2. Sh-USP14 can significantly inhibit the expression of AKT and EMT signals. Further verification through immunofluorescence and CO-IP experiments revealed that USP14 co-expressed with HK2. Further research has found that USP14 regulates the glycolytic function of liver cancer cells by the deubiquitination of HK2. USP14 regulates the autophagy function of liver cancer cells by regulating the interaction between SQSTM1/P62 and HK2. CONCLUSIONS: Our results indicate that USP14 plays a crucial role in the carcinogenesis of liver cancer. We also revealed the protein connections between USP14, HK2, and P62 and elucidated the potential mechanisms driving cancer development. The USP14/HK2/P62 axis may be a new therapeutic biomarker for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...